Derivatives of Basic Functions
Function \(y\) | Derivative \(\dot{y}\) | |
Constant Function | \(C =\) constant | \(0\) |
Power Functions | \(t^n\) | \(n \cdot t^{n-1}\) |
\(\sqrt{t} = t^{\frac{1}{2}}\) | \(\dfrac{1}{2} \cdot t^{\frac{1}{2}-1} = \dfrac{1}{2} \cdot t^{-\frac{1}{2}} = \dfrac{1}{2\sqrt{t}}\) | |
Trigonometric Functions | \(\sin(t)\) | \(\cos(t)\) |
\(\cos(t)\) | \(-\sin(t)\) | |
\(\tan(t)\) | \(\dfrac{1}{\cos^2(t)}= 1 + \tan^2(t)\) | |
\(\cot(t)\) | \(-\dfrac{1}{\sin^2(t)}= -1 - \cot^2(t)\) | |
Inverse Functions | \(\sin^{-1}(t)\) | \(\dfrac{1}{\sqrt{1-t^2}}\) |
\(\cos^{-1}(t)\) | \(-\dfrac{1}{\sqrt{1-t^2}}\) | |
\(\tan^{-1}(t)\) | \(\dfrac{1}{1+t^2}\) | |
\(\cot^{-1}(t)\) | \(-\dfrac{1}{1+t^2}\) | |
Exponential Functions | \(e^t\) | \(e^t\) |
\(a^t\) | \(\ln(a) \cdot a^t\) | |
Logarithmic Functions | \(\ln(t)\) | \(\dfrac{1}{t}\) |
\(\log_a(t)\) | \(\dfrac{1}{\ln(a) \cdot t}\) | |
Hyperbolic Functions | \(\sinh(t)\) | \(\cosh(t)\) |
\(\cosh(t)\) | \(\sinh(t)\) | |
\(\tanh(t)\) | \(\dfrac{1}{\cosh^2(t)}= 1 - \tanh^2(t)\) | |
\(\coth(t)\) | \(-\dfrac{1}{\sinh^2(t)}= 1 - \coth^2(t)\) | |
Areafunktionen | \(\sinh^{-1}(t)\) | \(\dfrac{1}{\sqrt{t^2+1}}\) |
\(\cosh^{-1}(t)\) | \(\dfrac{1}{\sqrt{t^2-1}}\) | |
\(\tanh^{-1}(t)\) | \(\dfrac{1}{1-t^2}\) | |
\(\coth^{-1}(t)\) | \(\dfrac{1}{1-t^2}\) |