Skip to main content Skip to page footer

Integration Rules

In technical mechanics, the integration of functions plays a crucial role as it is often used to calculate quantities such as displacement, velocity, and acceleration of objects.

There are various integration rules applied in engineering to solve specific integrals. These rules are helpful in solving complex mathematical problems that frequently arise in technical mechanics.

For this reason, the following integration rules are listed here, which are applied in solving specific integrals in technical mechanics.

Factor Rule

A constant factor in front of a function remains unchanged when integrating. The factor rule allows us to pull a constant in front of the integral sign and later reintroduce it after integration.

$$ \begin{aligned} \int\limits_{a}^{b} C \cdot f(x) \ \mathrm{d}x &= C \cdot \int\limits_{a}^{b} f(x) \ \mathrm{d}x \end{aligned} $$

Examples:

$$ \begin{alignat}{5} \int\limits_{a}^{b} 3 \cdot x^2 \ \mathrm{d}x &= 3 \cdot \int\limits_{a}^{b} x^2 \ \mathrm{d}x &&= 3 \cdot \dfrac{1}{3} x^3 \bigg|_{a}^{b} &&= x^3 \bigg|_{a}^{b}\\[10pt] \int\limits_{a}^{b} 2 \cdot \sin(x) \ \mathrm{d}x &= 2 \cdot \int\limits_{a}^{b} \sin(x)\ \mathrm{d}x &&= 2 \cdot (-)\cos(x) \bigg|_{a}^{b} &&= -2 \cos(x) \bigg|_{a}^{b} \end{alignat} $$

Sum Rule

A finite sum of functions can be integrated term by term:

$$ \begin{aligned} \int\limits_{a}^{b} \Bigl[ f_1(x) + f_2(x) + \cdots + f_n(x)\Bigr] \ \mathrm{d}x &= \int\limits_{a}^{b} f_1(x) \ \mathrm{d}x +\int\limits_{a}^{b} f_2(x) \ \mathrm{d}x +\cdots +\int\limits_{a}^{b} f_n(x) \ \mathrm{d}x \end{aligned} $$

Examples:

$$ \definecolor{lsgreen}{RGB}{79,175,152} \definecolor{lsblue}{RGB}{16,160,205} \definecolor{lsyellow}{RGB}{255,182,0} \begin{alignat}{7} \int\limits_{a}^{b} \Bigl[{\color{red}x^4} + {\color{lsblue}x^3} - {\color{lsyellow}x^2}\Bigr] \ \mathrm{d}x &= \int\limits_{a}^{b} {\color{red}x^4} \ \mathrm{d}x + \int\limits_{a}^{b} {\color{lsblue}x^3} \ \mathrm{d}x - \int\limits_{a}^{b} {\color{lsyellow}x^2} \ \mathrm{d}x &&= {\color{red}\dfrac{1}{5}x^5}\bigg|_{a}^{b} + {\color{lsblue}\dfrac{1}{4}x^4}\bigg|_{a}^{b} - {\color{lsyellow}\dfrac{1}{3}x^3}\bigg|_{a}^{b}\\[10pt] \int\limits_{a}^{b} \Bigl[{\color{red}6x^2} + {\color{lsblue}3\sin(x)} \Bigr] \ \mathrm{d}x &= \int\limits_{a}^{b} {\color{red}6x^2} \ \mathrm{d}x + \int\limits_{a}^{b} {\color{lsblue}3\sin(x)} \ \mathrm{d}x &&= {\color{red}2x^3}\bigg|_{a}^{b} - {\color{lsblue}3\cos(x)}\bigg|_{a}^{b} \end{alignat} $$
On this Page