Skip to main content Skip to page footer

Derivative Rules

In technical mechanics, the analysis of functional relationships plays a crucial role. Mathematical functions are often used to describe movements or forces, for example. The derivative of these functions allows us to calculate important properties such as velocities, accelerations, or forces.

To compute the derivative of a function, one or more derivative rules are typically applied.

Multiplication by Constant

A constant factor remains unchanged when differentiating.

$$ \begin{aligned} y &= C \cdot u(t) \\[10pt] \Rightarrow \qquad \dot{y} &= C \cdot \dot{u}(t) = C \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u(t)\Bigr] \end{aligned} $$

Examples:

$$ \begin{alignat}{7} f(x) &= y = 6x^2 \qquad && \Rightarrow \qquad y^{\prime} &&= 6 \cdot \bigl(x^2\bigr)^{\prime} &&= 6 \cdot 2x = 12x\\[10pt] f(t) &= y = 3\sin(t) \qquad && \Rightarrow \qquad \dot{y} &&= 3 \cdot \dot{\bigl(\sin(t)\bigr)} &&= 3 \cos(t) \end{alignat} $$

Sum Rule

A finite sum of functions can be differentiated term by term.

$$ \begin{aligned} y &= u_1(t) + u_2(t) + \cdots + u_n(t) \\[10pt] \Rightarrow \qquad \dot{y} &= \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u_1(t)\Bigr] + \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u_2(t)\Bigr] + \cdots + \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u_n(t)\Bigr] \end{aligned} $$

Examples:

$$ \definecolor{lsgreen}{RGB}{79,175,152} \definecolor{lsblue}{RGB}{16,160,205} \definecolor{lsyellow}{RGB}{255,182,0} \begin{alignat}{7} f(x) &= y = {\color{red}x^4} + {\color{lsblue}x^3} - {\color{lsyellow}x^2} \qquad && \Rightarrow \qquad y^{\prime} &&= {\color{red}\dfrac{\mathrm{d}}{\mathrm{d}x}\Bigl[x^4\Bigr]} + {\color{lsblue}\dfrac{\mathrm{d}}{\mathrm{d}x}\Bigl[x^3\Bigr]} - {\color{lsyellow}\dfrac{\mathrm{d}}{\mathrm{d}x}\Bigl[x^2\Bigr]} &&= {\color{red}4x^3}+{\color{lsblue}3x^2}-{\color{lsyellow}2x}\\[10pt] f(t) &= y = {\color{red}6t^2} + {\color{lsblue}3\sin(t)} \qquad && \Rightarrow \qquad \dot{y} &&= {\color{red}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[6t^2\Bigr]} + {\color{lsblue}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[3\sin(t)\Bigr]} &&= {\color{red}12t}+{\color{lsblue}3 \cos(t)} \end{alignat} $$

Product Rule

The product rule can be used to calculate derivatives of functions that are expressed as a product of other functions.

For two factor functions:

$$ \begin{aligned} y &= u(t) \cdot v(t) \\[10pt] \Rightarrow \qquad \dot{y} &= \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u(t)\Bigr] \cdot v(t) + u(t) \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[v(t)\Bigr] \end{aligned} $$

For three factor functions:

$$ \begin{aligned} y &= u(t) \cdot v(t) \cdot w(t)\\[10pt] \Rightarrow \qquad \dot{y} &= \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u(t)\Bigr] \cdot v(t) \cdot w(t) + u(t) \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[v(t)\Bigr] \cdot w(t) + u(t) \cdot v(t) \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[w(t)\Bigr] \end{aligned} $$

Examples:

$$ \definecolor{lsgreen}{RGB}{79,175,152} \definecolor{lsblue}{RGB}{16,160,205} \definecolor{lsyellow}{RGB}{255,182,0} \begin{alignat}{7} f(t) = y &= {\color{red}t^2} \cdot {\color{lsblue}\sin(t)} \\[7pt] \Rightarrow \qquad \dot{y} &= {\color{red}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[t^2\Bigr]} \cdot {\color{lsblue}\sin(t)} + {\color{red}t^2} \cdot {\color{lsblue}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[\sin(t)\Bigr]} = {\color{red}2t} \cdot {\color{lsblue}\sin(t)} + {\color{red}t^2} \cdot {\color{lsblue}\cos(t)}\\[12pt] f(x) = y &= {\color{red}x^2} \cdot {\color{lsblue}e^x} \cdot {\color{lsyellow}\sin(x)}\\[7pt] \Rightarrow \qquad y^{\prime} &= {\color{red}\dfrac{\mathrm{d}}{\mathrm{d}x}\Bigl[x^2\Bigr]} \cdot {\color{lsblue}e^x} \cdot {\color{lsyellow}\sin(x)} + {\color{red}x^2} \cdot {\color{lsblue}\dfrac{\mathrm{d}}{\mathrm{d}x}\Bigl[e^x\Bigr]} \cdot {\color{lsyellow}\sin(x)} + {\color{red}x^2} \cdot {\color{lsblue}e^x} \cdot {\color{lsyellow}\dfrac{\mathrm{d}}{\mathrm{d}x}\Bigl[\sin(x)\Bigr]}\\[7pt] &= {\color{red}2x} \cdot {\color{lsblue}e^x} \cdot {\color{lsyellow}\sin(x)} + {\color{red}x^2} \cdot {\color{lsblue}e^x} \cdot {\color{lsyellow}\sin(x)} + {\color{red}x^2} \cdot {\color{lsblue}e^x} \cdot {\color{lsyellow}\cos(x)} = {\color{lsblue}e^x} \cdot {\color{red}x} \cdot \bigl({\color{red}2} \cdot {\color{lsyellow}\sin(x)} + {\color{red}x} \cdot {\color{lsyellow}\sin(x)} + {\color{red}x} \cdot {\color{lsyellow}\cos(x)}\bigr) \end{alignat} $$

Quotient Rule

The quotient rule can be used to calculate derivatives of functions that are represented as quotients of other functions.

$$ \begin{aligned} y &= \dfrac{u(t)}{v(t)} \\[10pt] \Rightarrow \qquad \dot{y} &= \dfrac{\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u(t)\Bigr] \cdot v(t) - u(t) \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[v(t)\Bigr]}{\bigl[v(t)\bigr]^2} \end{aligned} $$

Examples:

$$ \definecolor{lsgreen}{RGB}{79,175,152} \definecolor{lsblue}{RGB}{16,160,205} \definecolor{lsyellow}{RGB}{255,182,0} \begin{aligned} f(t) = y &= \dfrac{{\color{red}e^t}}{{\color{lsblue}t^2}} \\[7pt] \Rightarrow \qquad \dot{y} &= \dfrac{{\color{red}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[e^t\Bigr]} \cdot {\color{lsblue}t^2} - {\color{red}e^t} \cdot {\color{lsblue}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[t^2\Bigr]}}{\bigl[{\color{lsblue}t^2}\bigr]^2} = \dfrac{ {\color{red}e^t} \cdot {\color{lsblue}t^2} - {\color{red}e^t} \cdot {\color{lsblue}2t}} {{\color{lsblue}t^4}}= \dfrac{ ({\color{lsblue}t} - {\color{lsblue}2}) \cdot {\color{red}e^t} } {{\color{lsblue}t^3}}\\[12pt] f(t) = y &= {\color{lsblue}e^{-t}}\cdot {\color{red}\sin(t)} \\[7pt] \Rightarrow \qquad \dot{y} &= \dfrac{\mathrm{d}}{\mathrm{d}t}\biggl[ \dfrac{{\color{red}\sin(t)}} {{\color{lsblue}e^t}}\biggr] = \dfrac{{\color{red}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[\sin(t)\Bigr]} \cdot {\color{lsblue}e^t} - {\color{red}\sin(t)} \cdot {\color{lsblue}\dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[e^t\Bigr]}}{\bigl[{\color{lsblue}e^t}\bigr]^2} = \dfrac{ {\color{red}\cos(t)} \cdot {\color{lsblue}e^t} - {\color{red}\sin(t)} \cdot {\color{lsblue}e^t}} {{\color{lsblue}e^{2t}}}= \dfrac{ ({\color{red}\cos(t)} - {\color{red}\sin(t)}) \cdot {\color{lsblue}e^t} } {{\color{lsblue}e^{2t}}}\\[7pt] &= \dfrac{ {\color{red}\cos(t)} - {\color{red}\sin(t)} } {{\color{lsblue}e^t}} = ( {\color{red}\cos(t)} - {\color{red}\sin(t)}) \cdot {\color{lsblue}e^{-t}} \end{aligned} $$

Chain Rule

The chain rule can be used to calculate the derivative of a function that is represented as a combination of several functions.

$$ \begin{aligned} y &= f\bigl(u(t)\bigr) \\[10pt] \Rightarrow \qquad \dot{y} &= \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[f(u)\Bigr] \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u(t)\Bigr] \end{aligned} $$

The derivative of a composite (chained) function \(y=f\bigl(u(t)\bigr)\), where \(f(u)\) and \(u(t)\) are the component functions, is the product of the outer and the inner derivative.

Procedure:

  1. Substitute \(u=u(t)\)
  2. Take the derivative \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[f(u)\bigr]\) (outer derivative)
  3. Eliminate the auxiliary variable \(u\) by substituting back
  4. Take the derivative \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[u(t)\bigr]\) (inner derivative)
  5. Multiply both derivatives together

Example:

\(f(t) = y = \ln(1+t^4) \)

  1. \(u = 1+t^4\)
  2. \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[\ln(u)\bigr] = \frac{1}{u}\)
  3. \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[\ln(u)\bigr] = \frac{1}{1+t^4}\)
  4. \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[1+t^4\bigr] = 4t^3\)
  5. \(\dot{y} = \frac{1}{1+t^4} \cdot 4t^3 = \frac{4t^3}{1+t^4}\)

Chain Rule for Doubly Nested Functions

$$ \begin{aligned} y &= f\Bigl(v\bigl(u(t)\bigr)\Bigr) \\[10pt] \Rightarrow \qquad \dot{y} &= \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[f(v)\Bigr] \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[v(u)\Bigr] \cdot \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[u(t)\Bigr] \end{aligned} $$

Procedure:

  1. Substitute \(u=u(t)\)
  2. Substitute \(v=v(u)\)
  3. Compute the derivative \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[f(v)\bigr]\) (outer derivative)
  4. Compute the derivative \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[v(u)\bigr]\) (1st inner derivative)
  5. Compute the derivative \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[u(t)\bigr]\) (2nd inner derivative)
  6. Multiply the three derivatives together
  7. Perform the reverse substitution in the order \(v \rightarrow u \rightarrow t\)

Example:

\(f(t) = y = \sin^3(t^2+t) \)

  1. \(u = t^2+t \quad \Rightarrow \quad y = \sin^3(u) = (\sin(u))^3\)
  2. \(v = \sin(u) \quad \Rightarrow \quad y = v^3\)
  3. \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[v^3\bigr] = 3v^2\)
  4. \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[\sin(u)\bigr] = \cos(u)\)
  5. \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[t^2+t\bigr] = 2t+1\)
  6. \(\dot{y} = 3v^2 \cdot \cos(u) \cdot (2t+1)\)
  7. \(\dot{y} = 3\sin^2(u) \cdot \cos(u) \cdot (2t+1) = 3(2t+1) \cdot \sin^2(t^2+t) \cdot \cos(t^2+t)\)

Logarithmic Differentiation

Logarithmic differentiation is a technique in differential calculus where functions are transformed into logarithmic form to calculate their derivatives. This can be useful when a function is expressed in exponential form and difficult to manipulate.

$$ \begin{aligned} \dfrac{\mathrm{d}}{\mathrm{d}t}\Bigl[\ln(y)\Bigr] &= \dfrac{1}{y}\cdot \dot{y}~ \end{aligned} $$

In logarithmic differentiation, the function \(y=f(t)\) is first logarithmized on both sides and then differentiated using the chain rule.
Logarithmic differentiation is applied to functions of the form \(y= \bigl[u(t)\bigr]^{v(t)}\) with \(u(t)>0\).

Example:

\(f(t) = y = t^{\cos(t)}\quad,t>0 \)

  1. Logarithmizing: \(\ln(y) = \ln\bigl(t^{\cos(t)}\bigr) = \cos(t) \cdot \ln(t)\)
  2. Differentiating: \(\frac{\mathrm{d}}{\mathrm{d}t}\bigl[\ln(y)\bigr] = \frac{\mathrm{d}}{\mathrm{d}t}\bigl[\cos(t) \cdot \ln(t)\bigr]\)
  3. \(\frac{1}{y} \cdot \dot{y} = \frac{\mathrm{d}}{\mathrm{d}t}\bigl[\cos(t)\bigr] \cdot \ln(t) + \cos(t) \cdot \frac{\mathrm{d}}{\mathrm{d}t}\bigl[\ln(t)\bigr]\)
  4. \(\frac{1}{y} \cdot \dot{y} = - \sin(t) \cdot \ln(t) + \cos(t) \cdot \frac{1}{t}\)
  5. \(\dot{y} = y \cdot \Bigl(- \sin(t) \cdot \ln(t) + \frac{\cos(t)}{t}\Bigr)\)
  6. \(\dot{y} = t^{\cos(t)} \cdot \Bigl(- \sin(t) \cdot \ln(t) + \frac{\cos(t)}{t}\Bigr)\)