Solids: Volume calculation, centroid coordinates
Solids | ||||
Conical solids | Cone | $$\begin{align}V&=\dfrac{A \cdot h}{3}\\A&=r^2 \cdot \pi=\dfrac{d^2 \cdot \pi}{4}\\V&=\dfrac{1}{3} \cdot r^2 \cdot \pi \cdot h\\V&=\dfrac{1}{3} \cdot \dfrac{d^2 \cdot \pi}{4} \cdot h\end{align}$$ | $$\begin{align}C_x &= 0\\[7pt]C_y &= 0\\[7pt] C_z &= \dfrac{1}{4} \cdot h\end{align}$$ |
\(C:\) | Centroid |
\(r:\) | Radius |
\(d:\) | Diameter |
\(C_x:\) | Centroid coordinate |
\(C_y:\) | Centroid coordinate |
\(C_z:\) | Centroid coordinate |
\(A:\) | Area |
\(V:\) | Volume |